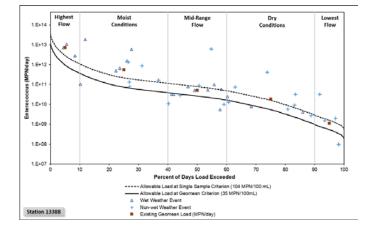
Carancahua Bay Watershed Protection Plan and TMDL I-Plan

Michael Schramm

Overview


- Brief Recap
- ⊙ SELECT
- Management Measures
- ⊙ Measuring Success

Recap

 Load Reduction Curves to assess pollutant loads and identify needed reductions

 Identified 86% reduction in bacteria loads required to meet water quality standards

Recap

• Discussed and estimated possible sources

Recap

 Ranked out possible management measures

SELECT

Michael Schramm – Texas Water Resources Institute Uvashree Mohandass – Texas A&M Water Management and Hydrological Science

April 24, 2018

Estimating Potential Enterococcus Loads

- Spatially Explicit Load Enrichment Calculation Tool (SELECT)
- Characterize bacteria sources based on spatial (how things are distributed across the landscape) factors
- Relies on:
 - Land use
 - Soil
 - Population density estimates

SELECT

Identify the areas and sources with highest *potential* to impact water quality

Texas Water

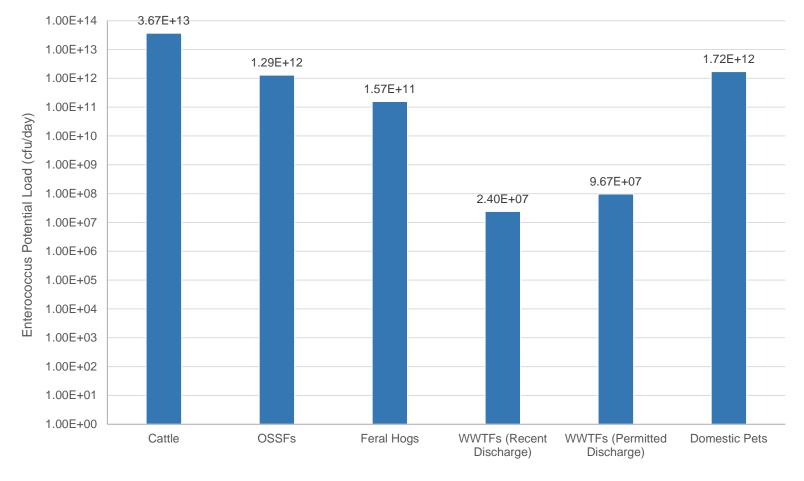
Resources Institute

make every drop count

Subwatershed boundaries Land Cover/ Land use Soils Livestock & Wildlife Populations Human Populations Bacteria Loading Rates

Stakeholder Input

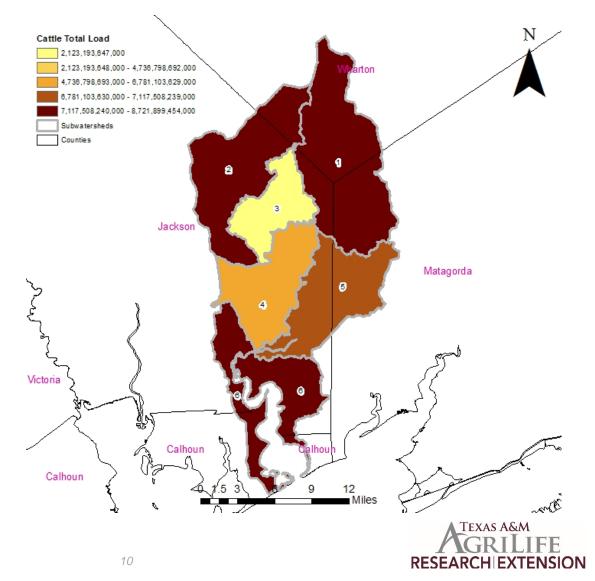
Landowner practices Local knowledge


TEXAS A&M

RESEARCH EXTENSION

Total Potential Loading

Enterococcus Potential Load Summary

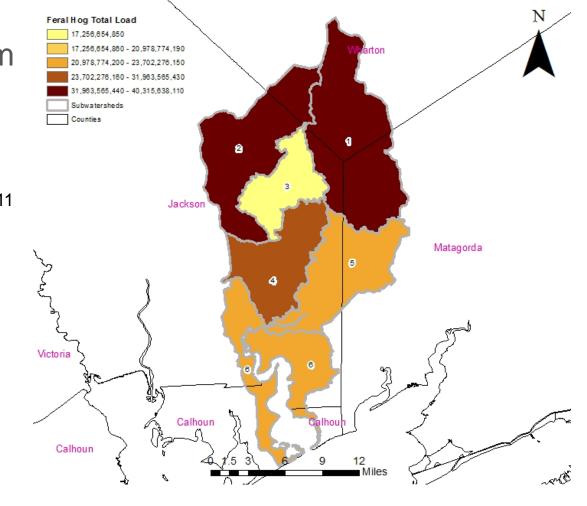


GIS Analysis: Cattle

Potential Loading from Cattle:

- Estimated 24,496 head
- Annual Load 3.67 × 10¹³ cfu/yr
- Subwatersheds 1, 2, 6

GIS Analysis: Feral Hogs

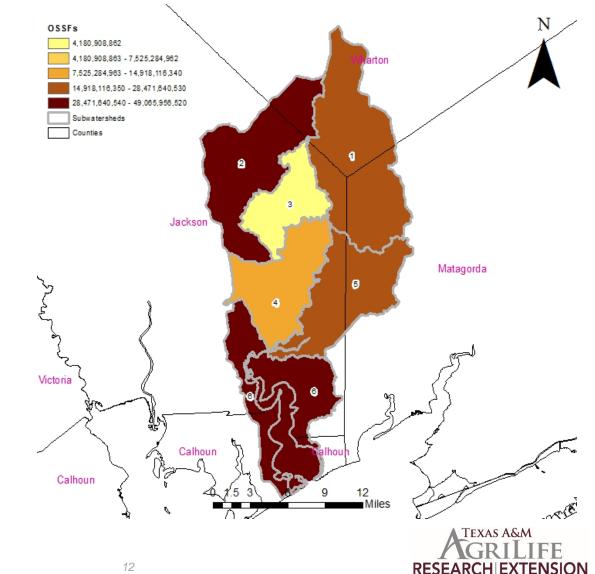

Potential Loading from Feral Hogs:

- Estimated 5,936 feral hogs
- Annual Load 1.57 × 10¹¹ cfu/yr
- Subwatersheds 1, 2

Texas Water

Resources Institute

make every drop count



GIS Analysis: **OSSFs**

Potential Loading from **OSSFs**:

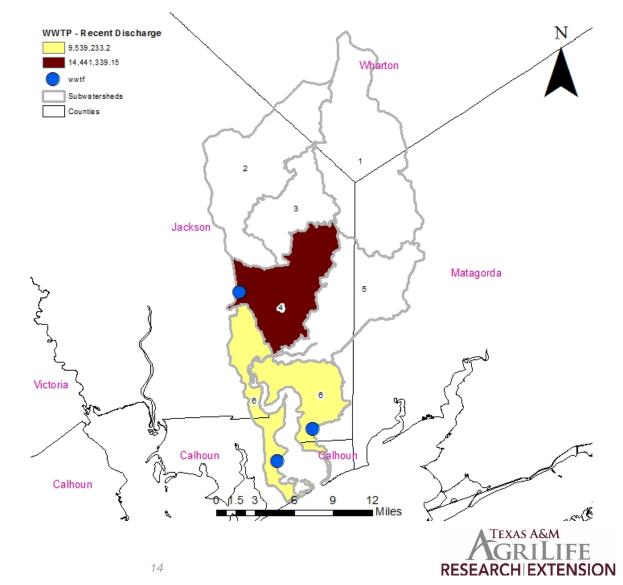
- Estimated 1,389 OSSFs \odot
- Annual Load 4.70 × 10¹³ $\mathbf{\bullet}$ cfu/yr
- Subwatersheds 2, 6 \odot

GIS Analysis: Pets (Dogs & Cats)

Potential Loading from Dogs:

- Estimated 937 dogs & 1,024 cats
- Annual Load 1.72 × 10¹² cfu/yr (DRAFT)
- SELECT map is not completed yet

GIS Analysis: WWTPs Recent Discharge


- Potential Loading from WWTPs:
- 3 WWTPs

Texas Water

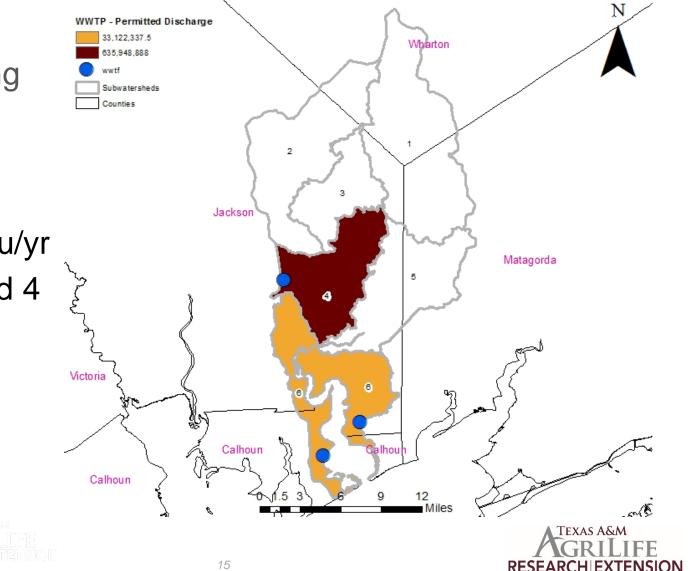
Resources Institute

make every drop count

- Annual Load
 8.75 × 10⁹ cfu/yr
- Subwatershed 4

GIS Analysis: WWTPs Permitted Discharge

Potential Loading from WWTPs:


• 3 WWTPs

Texas Water

Resources Institute

make every drop count

- Annual Load 3.53×10^{10} cfu/yr
- Subwatershed 4

SELECT Summary

Source	Potential Daily Load ^a	Priority Subwatersheds
Cattle	3.67×10 ¹³	1, 2, 6
Feral Hogs	1.57×10 ¹¹	1, 2
OSSFs	1.29×10 ¹²	2, 6
Dogs & Cats	1.72×10^{12} (Pending final SELECT run)	(Pending final SELECT run)
Wastewater plants (Recent Discharge)	2.40×10 ⁷	4
Wastewater plants (Permitted Discharge)	9.67×10 ⁷	4

^a in units of MPN/day

Contact Us

Allen Berthold Texas Water Resources Institute 979-845-2028 taberthold@ag.tamu.edu

Michael Schramm Texas Water Resources Institute 979-458-9191 michael.schramm@ag.tamu.edu

Management Measures

Michael Schramm Allen Berthold Ph.D. Stephanie Ruff Texas Water Resources Institute

April 24, 2018

TEXAS A&M GRILIFE RESEARCH EXTENSION

Management Measures

- 1. Develop and implement Water Quality Management Plans or conservation plans
- 2. Increase soil testing on agricultural lands
- 3. Repair and replace failing OSSFs
- 4. Develop voluntary OSSF inspection program
- 5. Promote feral hog control and removal
- 6. Promote effective pet waste management

Develop and implement Water Quality Management Plans or conservation plans

- Fund and hire a field technician (\$75,000 per year)
- Develop and implement 70 plans (\$15,000 per plan)
- Provide outreach and promotional material to increase participation
- Estimated load reductions
 - 3.75×10^{14} MPN/year Enterococcus
 - 7.76 × 10⁴ pounds of nitrogen per year
 - 2.75×10^4 pounds of phosphorous per year

Currently 24 WQMPs covering 5,277 acres in the watershed

Increase soil testing on agricultural lands

- Soil testing by producers/property owners (\$10 per test ~20 acres)
- Develop and implement soil testing campaign (\$78,252 covers 156,505 acres of pastures and cropland)

- Estimated load reductions
 - Inknown, nutrient reductions will be property and producer specific

Repair and replace failing OSSFs

- Develop and administer OSSF repair/replacement program
- Repair and replace 42 septic tanks (\$5 \$10k per system)
- Estimated load reductions
 - 9.67 × 10¹² MPN/year Enterococcus
 - 4.87×10^2 pounds of nitrogen per year
 - 1.22×10^2 pounds of phosphorous per year

Develop Voluntary OSSF Inspection Program

- Develop and administer a voluntary OSSF inspection program
- Estimated load reductions
 - Unknown

Promote Feral Hog Removal and Control

- Construct fencing around deer feeders (\$200 per feeder)
- ⊙ Trap, hunt, remove hogs on site
- Deliver feral hog management workshops
- Reduce population by 15% below current population estimate
- Estimated load reductions
 - 8.58×10¹² MPN/year Enterococcus
 - 5.68×10^3 pounds of nitrogen per year
 - 2.03×10^3 pounds of phosphorous per year

Promote Effective Pet Waste Management

- Develop and deliver education and outreach materials to at least 1,000 households
- Estimated load reductions
 - 2.69 × 10¹³ MPN/year Enterococcus
 - 88.2 pounds of nitrogen per year
 - 20.4 pounds of phosphorous per year

Additional Needs

- ⊙ Part or full-time watershed coordinator
- Continued and additional water quality monitoring
 - Assess progress (next presentation)
 - Limited dissolved oxygen data available
- Education and outreach
 - General water quality education (Texas Watershed Stewards, Texas Well Owners Network, Lone Star Healthy Streams, Riparian Ecosystem, and others)
 - Texas Stream Team volunteer monitoring
 - Newsletters, websites, meetings, and other methods to increase awareness

Total Potential Load Reduction

- Needed bacteria load reduction to meet existing water quality standards: 2.86 × 10¹⁴ MPN/year
- O Potential bacteria load reduction with management measures after 10 years: 4.20 × 10¹⁴ MPN/year

Contact Us

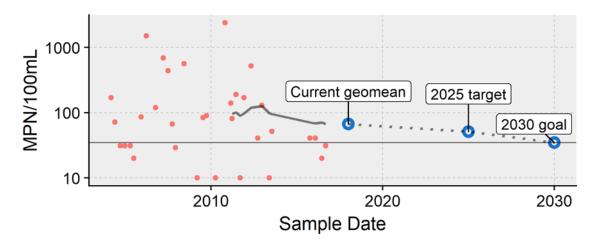
Allen Berthold Texas Water Resources Institute 979-845-2028 taberthold@ag.tamu.edu

Michael Schramm Texas Water Resources Institute 979-458-9191 michael.schramm@ag.tamu.edu

Measuring Success

Michael Schramm Allen Berthold Ph.D. Texas Water Resources Institute

April 24, 2018

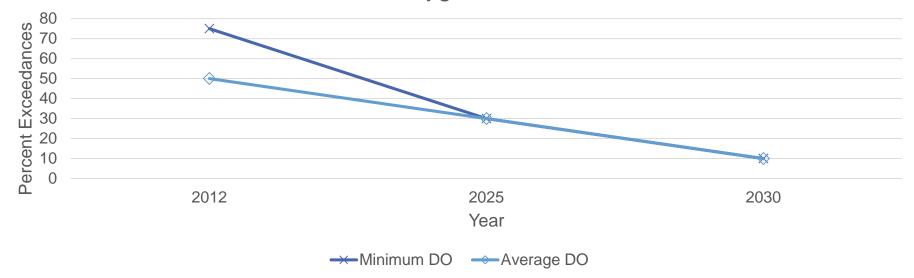

Measuring Success

- Positive impacts on water quality might take a long time
- Tracking water quality status and implementation progress is critical to stay focused on the big picture
- Adaptive management is a process to adjust the plan if things take a wrong turn

Water quality goals and targets

Assessed samples — 7-yr Geomean

	2014 Integrated Report	Dec 2008 – Nov 2016*	2025 Target	2030 Goal
7-yr Geometric	124	67.3	57	35
Mean	MPN/100mL	MPN/100mL	MPN/100mL	MPN/100mL

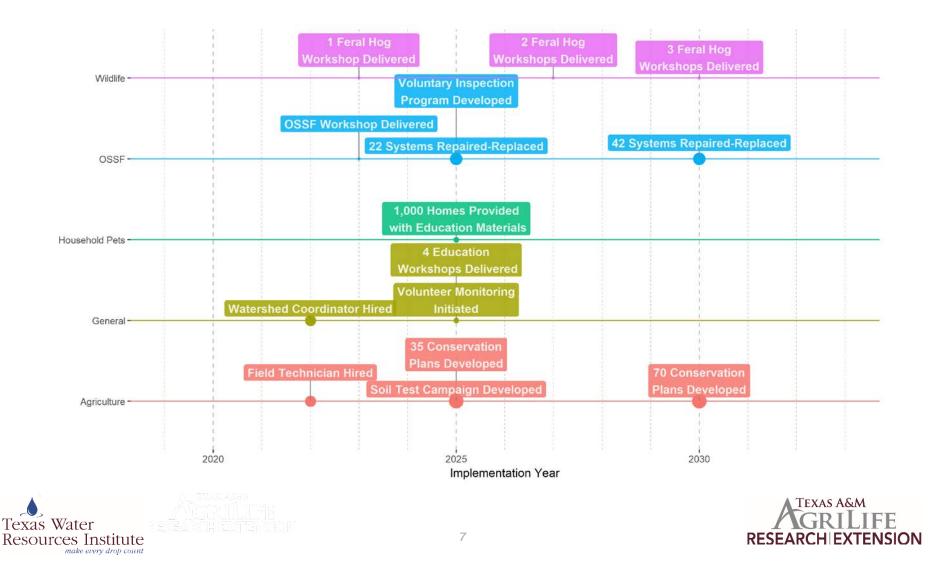

* This is not the official data assessment for Carancahua Bay.

Water quality goals and targets

Dissolved Oxygen Exceedances

Data Reviews

- TCEQ Integrated Report on Surface Water Quality
- Provide up to date 7-yr Geometric Mean for Enterococcus and Binomial Test for Dissolved Oxygen and Nutrients
- Statistical trend analysis of water quality concentrations and instream loads


Project Milestones

- Milestones are established to evaluate implementation progress
- Interim milestones helps break up seemingly large milestones into more achievable actions

Project Milestones

Adaptive Management

- ⊙ The watershed plan is a living document
- Review and revise as necessary
- When do we need to revise the plan? Adaptive management

Adaptive Management

- ⊙ Formal review after 5 years
- ⊙ Three assessments for positive progress:
 - Water quality increase in pollutant concentrations and/or loads, increase in % exceedances
 - Implementation progress Substantial delays or lower than expected achievements
 - External factors Significant increases in population, changes in land use, economic factors, or other data that point to increases in pollutant sources or changes in hydrologic condition
- Two or more events should trigger changes in the plan

Adaptive Management

 Are additional assessments/criteria warranted for adaptive management?

Contact Us

Allen Berthold Texas Water Resources Institute 979-845-2028 taberthold@ag.tamu.edu

Michael Schramm Texas Water Resources Institute 979-458-9191 michael.schramm@ag.tamu.edu

