LAVACA RIVER WATERSHED PROTECTION PLAN

Allen Berthold, Michael Schramm - TWRI June 29, 2017

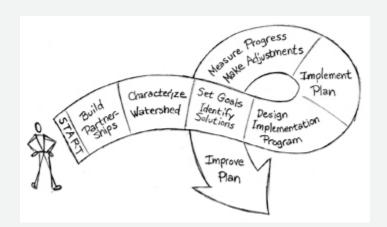
2

Overview

- Chapter 1 Intro to watershed management
- Chapter 2 Describes the watershed
- Chapter 3 Describes current water quality
- Chapter 4 Assessment of potential pollutant sources

- Overview Chapter 5 Strategies to reduce bacteria loading
 - Chapter 6 Education and outreach programs
 - Chapter 7 Financial and technical resources
 - Chapter 8 Measuring progress and success

- Overview Appendix A Calculations and references for potential loadings
 - Appendix B Calculations and references for potential load reductions
 - Appendix C EPA Nine Elements of Successful Watershed Protection Plans

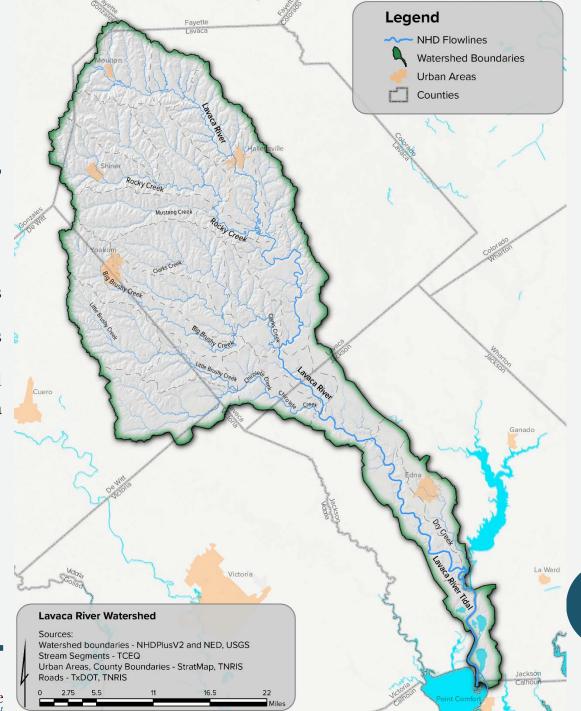

Introduction to Watershed Management

CHAPTER 1

Introduction to Watershed Management

pages 1-4

- Describes the concepts of "watersheds", point and non-point source pollution, stakeholders, adaptive management, and the watershed approach.
- Provides EPA's nine key elements to watershed protection plans

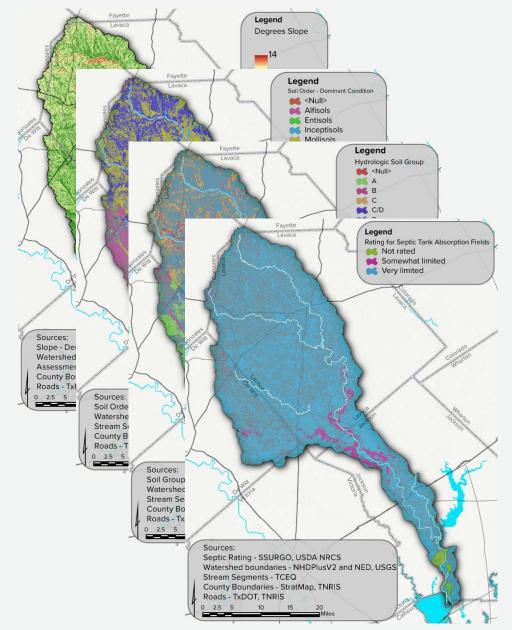


CHAPTER 2

• 909 sq miles

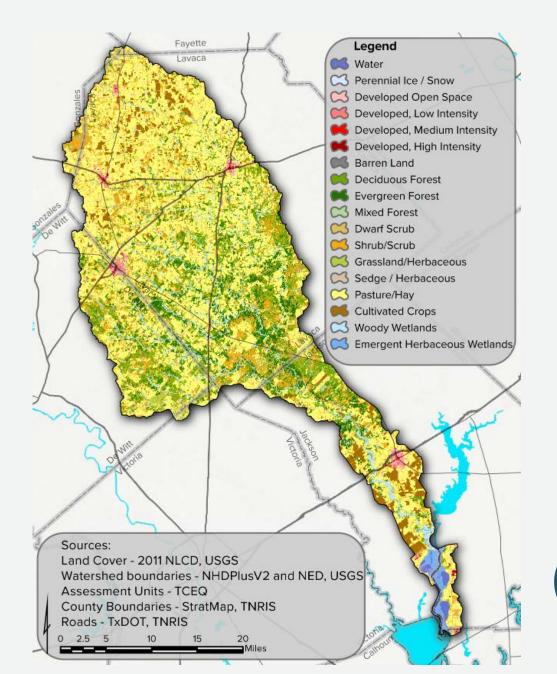
• 802 miles of streams and rivers

Includes non-tidal and tidal segments of the Lavaca



Soils and topography:

- Low elevation (290 ft average)
- Mostly flat (1 degree slope avg)
 - Soils well suited for ag production
 - Moderate to low water infiltration
 - Limited septic suitability

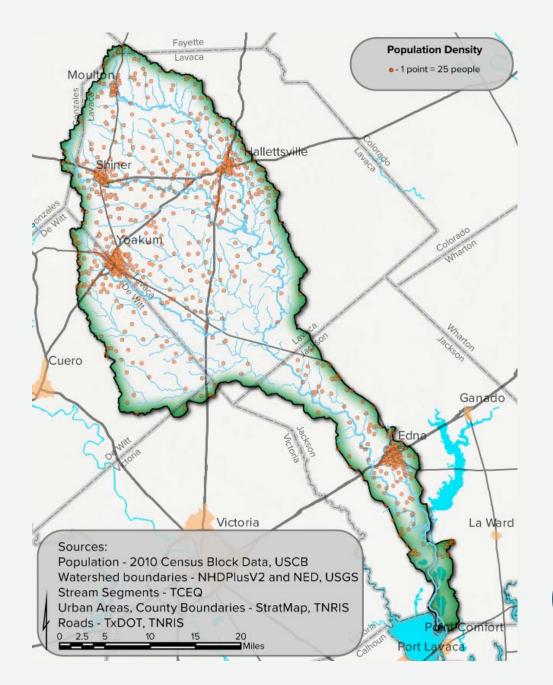


Land use:

- 62% -hay/pasture/brush/grass
 - 6% Urban/developed
 - 4.5% row crops

Climate:

- Peak highs ~95°F in August
- Minimum lows ~45°F in January
 - ~41" of rainfall/yr
 - May rainfall ~5"
 - February rainfall ~2"



Population demographics:

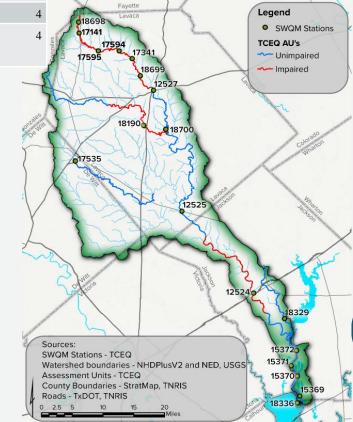
- ~30,000 people
- Minor population growth expected
- 13-16% with college degrees
- 17-38% do not speak English as primary language

CHAPTER 3

Water Quality pages 15-33

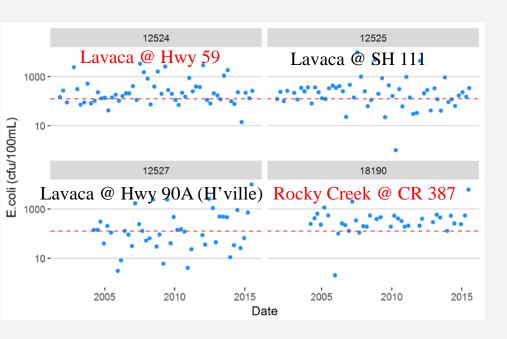
- Intro to Texas water quality standards
- TCEQ defined segments and "AUs"
- Overview of existing bacteria, DO, nutrients, and water flow data
- Identify and quantify (where possible) potential sources of bacteria loads

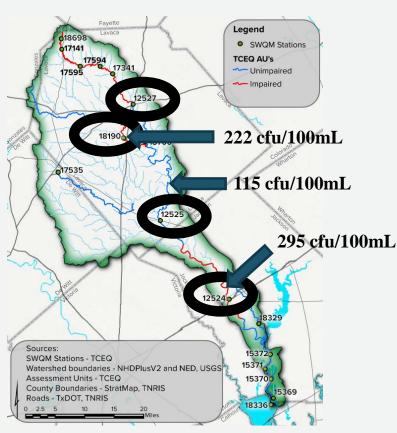
Water Quality


pages 15-33

Label	AU	Segment Name	Impairments
A	1601_01	Lavaca River Tidal	None
В	1601_02	Lavaca River Tidal	None
C	1601_03	Lavaca River Tidal	None
D	1601A_01	Catfish Bayou	None
E	1601B_01	Redfish Bayou	None
F	1601C_01	Dry Creek	None
G	1602_02	Lavaca River Above Tidal	None
Н	1602_03	Lavaca River Above Tidal	Primary Contact
			Recreation (Elevated
			Bacteria)
I	1602A_01	Big Brushy Creek	None
I	1602B_01	Rocky Creek	Primary Contact
			Recreation (Elevated
			Bacteria)
κ /	1602B_02	Rocky Creek	None
Ľ	1602C_01	Lavaca River Above Campbell	Aquatic Life (Depressed
		Branch	Dissolved Oxygen)
M	1602C_02	Lavaca River Above Campbell	Aquatic Life (Depressed
		Branch	Dissolved Oxygen)
$\overline{}$			
\			
	1		7
	urces:		Mar X
Wa	tershed bo	undaries - NHDPlusV2 and	NED, USGS
Ass	sessment U	Inits - TCEQ	
Urb	oan Areas, (County Boundaries - StratM	ap, TNRIS
	ads - TxDO	1100	.,
		, , , , , , , , , , , , , , , , , , , ,	
102!	5 5 10	15 20	

		_				
Station				Annual	samples	
	AU	Description	Conventional	Field	Flow	Bacteria
15372	1601_01	Lavaca River @ Frels Landing		12		
15371	1601_02	Lavaca River @ Mobil Dock		12		
15370	1601B_01	Lavaca River @ Mouth of		12		
		Redfish Lake				
15369	1601A_01	Lavaca River @ Mouth of Swam		12		
		Lake				
18336	1601_03	Lavaca River near Lavaca Bay	4	12		
12525	1602_02	Lavaca River @ SH 111	4	12	12	4
12524	1602_03	Lavaca River @ Hwy 59	4	12	12	4
18190	1602B_01	Rocky Creek @ Lavaca CR 387	4	4		4
12527	1602_02	Lavaca River @ Hwy 90A	4	4	4	4
		Hallettsville				





Current Water Quality conditions

Chapter 3.1 pages 17-19

Summary of Potential Sources

Chapter 3.5 pages 24-33

Pollutant Source	Potential Cause	Potential Impact
Livestock	Runoff from pastures	Fecal material and bacteria
	 Overgrazing 	directly deposited into stream or
	Manure transport to streams	through runoff
	Direct deposition into	
	streams	
Wildlife	Manure transport to streams	Fecal material and bacteria
	Direct deposition into	directly deposited into stream or
	streams	through runoff
	Riparian degradation	
OSSFs	System failure	Insufficiently or untreated water
	Improper design	runoff to streams
Urban Stormwater	Increased runoff from	Increased velocity and volume of
	impervious surface	stormwater quickly transport
	Improper disposal of pet	bacteria laden water to streams
	waste	
Permitted Dischargers/SSOs	Inflow & Infiltration	Untreated waste enters waterbody
	Overloaded or aging	
	infrastructure	

CHAPTER 4

Pollution Source Assessment

pages 40-50

Best Available Data

Research

NASS

NLCD

US Census

Other Local, State, and Federal Datasets

Identify the areas and sources with highest *potential* to impact water quality

G<mark>IS Analys</mark>is

Subwatershed boundaries

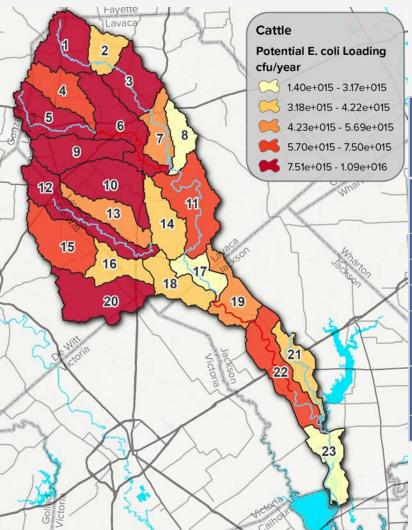
Land Cover/ Land use

Soils

Livestock & Wildlife Populations

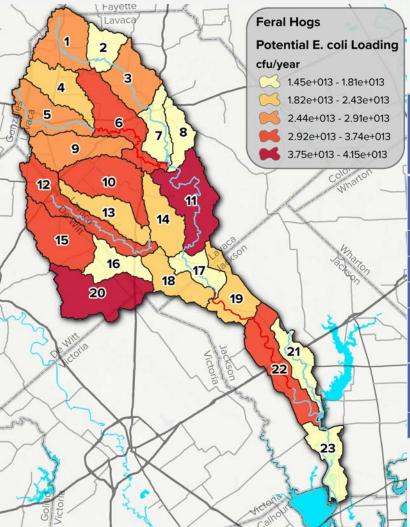
Human

Populations


Bacteria Loading Rates

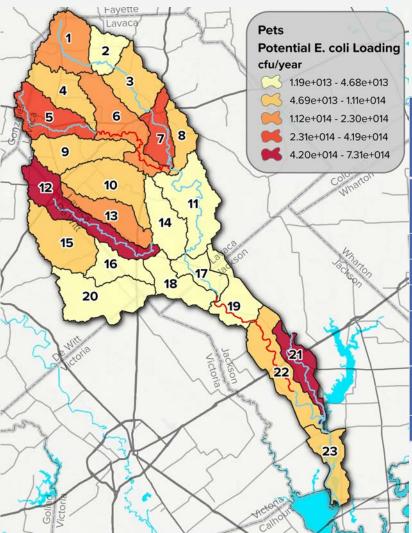
Stakeholder Input

Landowner practices
Local knowledge



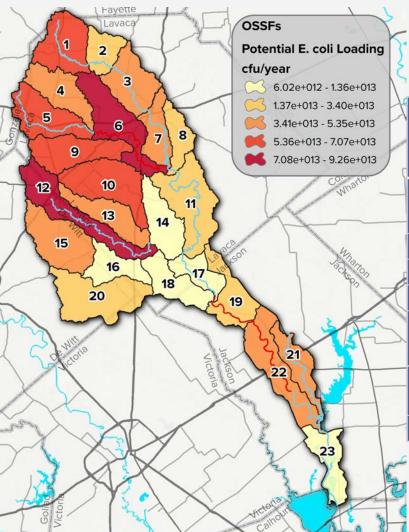
	Lavaca		Rocky Creek	
		Highest Priority		Highest Priority
Source	Potential Load†	Subwatersheds	Potential Load [†]	Subwatersheds
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5

[†] in units of cfu E. coli per year



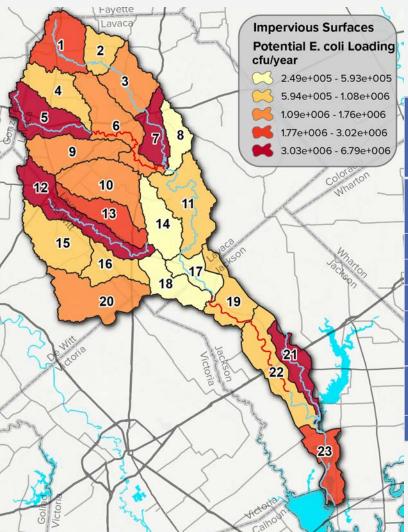
	Lav	aca	Rocky	Creek	
		Highest Priority		Highest Priority	
Source	Potential Load†	Subwatersheds	Potential Load†	Subwatersheds	
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9	
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6	
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5	
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6	
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5	
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5	

† in units of cfu E. coli per year



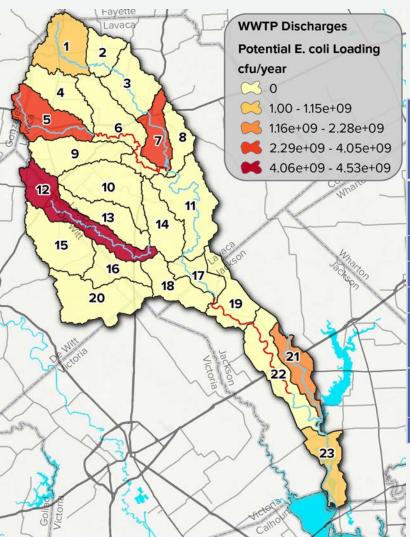
	Lav	aca	Rocky	Creek
		Highest Priority		Highest Priority
Source	Potential Load†	Subwatersheds	Potential Load [†]	Subwatersheds
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5

† in units of cfu E. coli per year



	Lav	aca	Rocky	Creek
4		Highest Priority		Highest Priority
Source	Potential Load [†]	Subwatersheds	Potential Load [†]	Subwatersheds
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5

[†] in units of cfu E. coli per year



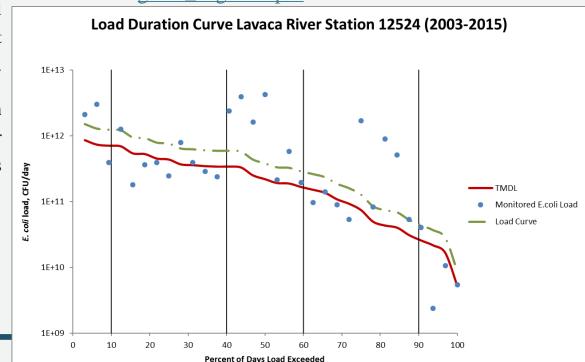
	Lavaca		Rocky	Creek
		Highest Priority		Highest Priority
Source	Potential Load†	Subwatersheds	Potential Load [†]	Subwatersheds
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5

† in units of cfu E. coli per year

	Lav	aca	Rocky	Creek		
		Highest Priority		Highest Priority		
Source	Potential Load†	Subwatersheds	Potential Load†	Subwatersheds		
Cattle	1.45 × 10 ¹⁷	1, 3, 5, 6, 9, 10, 12, 20	3.53 × 10 ¹⁶	5, 6, 9		
Feral Hogs	6.03 × 10 ¹⁴	11, 20	1.18 × 10 ¹⁴	6		
Dogs	3.71×10^{15}	5, 7, 12, 21	7.34×10^{14}	5		
OSSFs	9.29 × 10 ¹⁴	6, 12	2.67 × 10 ¹⁴	6		
Urban Stormwater	4.27 × 10 ⁷	5, 7, 12, 21	8.48 × 10 ⁶	5		
WWTFs	1.62 × 10 ¹⁰	1, 5, 7, 12, 21, 23	4.05 × 10 ⁹	5		
[†] in units of cfu E. coli per year						

TEXAS A&M
GRILIFE
RESEARCH EXTENSION

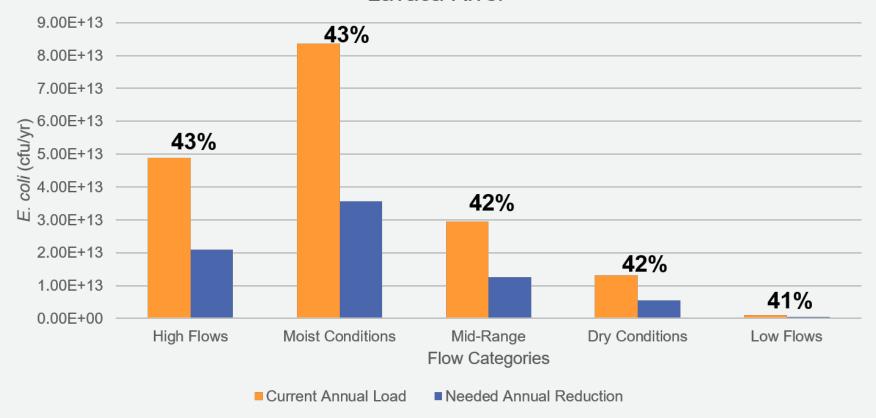
Pollution Source Assessment pages 34-40

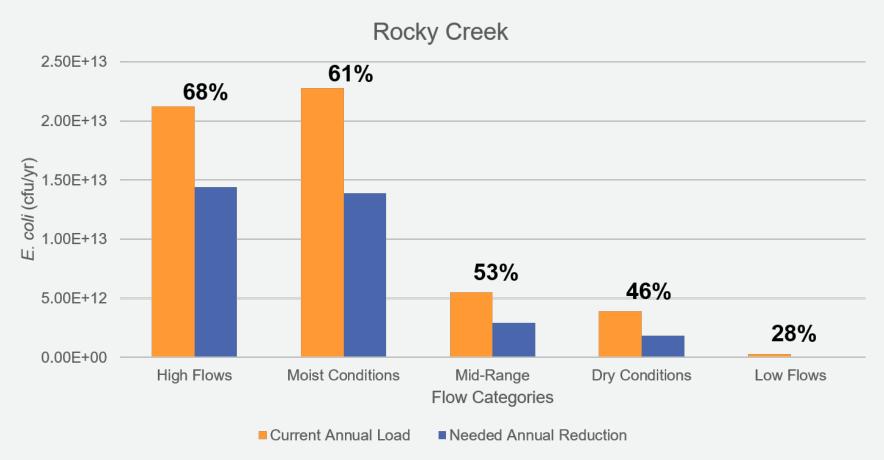

So far, determined important subwatersheds and potential magnitudes of loadings for different sources.

Next step is to determine how much reduction is needed to achieve water quality standards

Load Duration Curve

- Method to visualize and assess pollutant loads in relation to streamflow
- Used to estimate pollutant capacity of the stream,
 and estimate needed reductions
- More details:


https://www.epa.gov/sites/production/files/2015-07/documents/2007_08_23_tmdl_duration_curve_ guide_aug2007.pdf


Lavaca River

Total reduction of 7.51×10¹³ cfu/yr

Total reduction of 3.31×10¹³ cfu/yr

CHAPTER 5

31

Management Measures

Bacteria Source: Cattle and other livestock (pages 53-55)

Objectives:

- Work with producers to develop voluntary, property specific conservation plans and WQMPs that improve grazing practices and water quality
- Provide technical and financial support for producers to implement needed practices

Strategy:

- Fund a regional or watershed WQMP technician
- Develop, implement 100 conservation plans or WQMPs (30 in Rocky Creek)
- Deliver Lone Star Healthy Streams workshops

- 3.34×10^{14} cfu *E. coli* per year in the Lavaca River
- 7.51×10^{13} cfu *E. coli* per year in Rocky Creek

32

Management Measures

Bacteria Source: Feral hogs (pages 57-58)

Objectives:

- Work with landowners to voluntarily reduce feral hog populations
- Reduce food availability for feral hogs

Strategy:

- Reduce and maintain feral hogs populations by 15% in both watersheds (2,439 hogs and 478)
- Construct fences around deer feeders
- Develop and implement wildlife habitat management plans and practices
- Feral Hog Management Workshop

- 8.48×10^{13} cfu *E. coli* per year in the Lavaca River
- 1.66×10^{13} cfu *E. coli* per year in Rocky Creek

Management Measures

Bacteria Source: On-Site Sewage Facilities (pages 59-60)

Objectives:

- Reduce number of failing OSSFs
- Work with counties and communities to replace failing systems as funding allows
- Educate homeowners

Strategy:

- Develop repair and replacement program
- Identify, repair and replace 40 failing OSSFs within Lavaca River watershed and 11 in Rocky Creek watershed
- OSSF operations and maintenance workshops

- 4.72×10^{13} cfu *E. coli* per year in the Lavaca River
- 1.30 × 10¹³ cfu *E. coli* per year in Rocky Creek

Management Measures

Bacteria Source: Dog Waste (pages 61-62)

Objectives:

- Educate residents on proper pet waste disposal
- Install and maintain pet waste stations in high visibility areas

Strategy:

- Install at least 5 pet waste stations in area parks
- Develop and provide educational resources to residents

- 3.71×10^{13} cfu *E. coli* per year in the Lavaca River
- 7.63×10^{12} cfu *E. coli* per year in Rocky Creek

Management Measures

Bacteria Source: Urban stormwater runoff (pages 63-64)

Objectives:

- Educate residents on stormwater best management practices
- Work with various stakeholders to identify and install stormwater BMP demonstration projects

Strategy:

- Identify and install stormwater BMPs as funding becomes available
- Deliver Riparian and Stream Ecosystem workshop and others as appropriate

Estimated Load Reductions after full implementation:

Not calculated

Management Measures

Bacteria Source: Sanitary Sewer Overflows (pages 65-66)

Objectives:

- Reduce unauthorized discharges and SSOs
- Repair or replace sewage infrastructure with I&I issues
- Educate residents and homeowners

Strategy:

- Develop program to repair/replace damaged sewage pipes and connections
- Identify, repair and replace damaged connections as funding allows
- Develop and deliver education material to residents and property owners

Estimated Load Reductions after full implementation:

Not Calculated

Management Measures

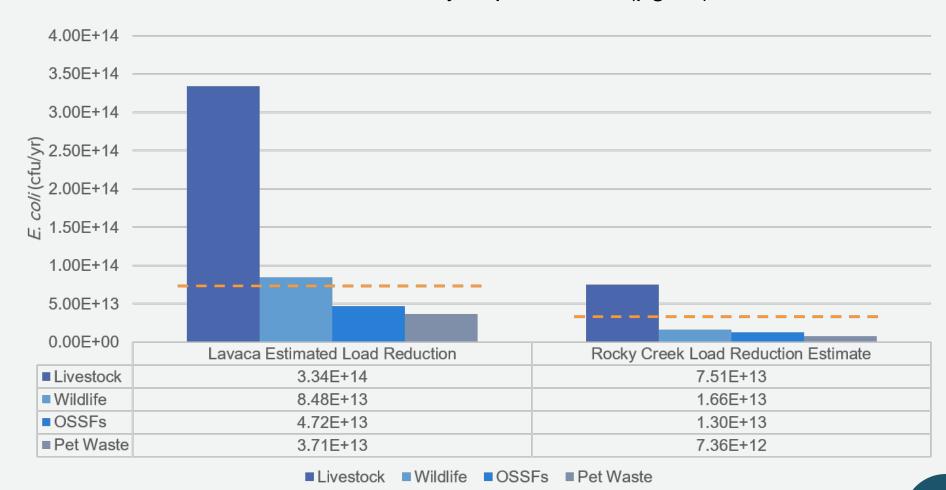
Bacteria Source: Illicit and illegal dumping (page 67)

Objectives:

• Promote and expand education efforts across the watershed

Strategy:

Develop and deliver educational and outreach materials to residents


Estimated Load Reductions after full implementation:

Not calculated

Potential load reductions if management measures are fully implemented (pg 68)

CHAPTER 6

Education and Outreach pages 69-73

- Watershed coordinator leads the efforts to establish and maintain working partnerships with stakeholders
- **Public meetings** Future meetings approximately annually or as needed
- Education programs Description of available programs that will be delivered in the watershed

Schedule:

Table 24

Page 90

Education and Outreach	Responsible Party	Unit Cost									Total Cost		
Programs and Activities	,		1	2	3	4	5	6	7	8	9	10	
Livestock													
Lone Star Healthy Streams (Cattle) ‡	AgriLife Extension, Watershed Coordinator	N/A		1		1		1		1		1	N/A [‡]
Management Practice Field Days	AgriLife Extension, Watershed Coordinator, NRCS	\$1,000			1		1		1		1		\$5,000
Feral Hogs													
Lone Star Healthy Streams (Feral Hog) [‡] or Feral Hog Management Workshop	AgriLife Extension, Watershed Coordinator, Texas Wildlife Services, TPWD	N/A or \$3,000 per Feral Hog Workshop	1		1		1		1		1		\$15,000
OSSFs .													
OSSF Owner O&M Training	AgriLife Extension	\$3,000	1		1		1		1		1		\$15,000
	General Watershed Management									1			
Texas Watershed Stewards	AgriLife Extension	N/A		1		1		1		1		1	N/A [‡]
Texas Well Owners Network	AgriLife Extension	N/A		1		1		1		1		1	N/A [‡]
Texas Riparian and Ecosystem Training	AgriLife Extension	N/A	1		1		1		1		1		N/A‡
Watershed Newsletter	Watershed Coordinator	\$500	1	1	1	1	1	1	1	1	1	1	\$5,000

[†] number of programs delivered per period, not cumulative ‡ additional funding not required; currently funded through existing resources

Financial and Technical Resources

CHAPTER 7

43

Financial and Technical Resources

Technical Assistance

Management Measure

TSSWCB; local SWCDs; NRCS;

Potential Sources

MM1 : WQMPs or Conservation

Extension

Plans

Extension

MM2: Feral hog control

Extension; TPWD; NRCS;

TSSWCB

Technical Resources

Pages 74-78

MM3: On-site sewage systems

MM4: Pet waste management

Lavaca County Designated

Representative, Jackson County
Office of Permitting; Extension

City public works departments;

Extension

MM5: Stormwater runoff City public works departments;

management engineering firms; Extension

MM6: Inflow and Infiltration City public works departments; engineering firms, TCEQ

MM7: Illicit Dumping Extension; County law

enforcement; TPWD game

wardens

Financial and Technical Resources

Some Examples:

- Coastal Zone Management Program and Coastal Management Program
- Clean Water Act Section 319 Nonpoint Source Grants
- Conservation Innovation Grants
- Environmental Quality Incentives
 Program (EQIP)
- Regional Conservation Partnership Programs

Financial Resources

Pages 78-84

CHAPTER 8

Measuring Success

pages 85-88

- The primary goal of the WPP is to restore water quality in the Lavaca River and Rocky Creek to the water quality standards set by the state of Texas through the long-term conservation and stewardship of the watershed's resources.
- Current standard: 126 cfu/100 ml
- Targets:

Station(s)	Segment	Current Concentration [†]	5 yrs after implementation [†]	10 yrs after implementation [†]
12424	1602_03 Lavaca River Above Tidal	295	211	126
18190	1602B_01 Rocky Creek	222	174	126

[†] in units of MPN E. coli/100mL

Measuring Success

pages 85-88

- Milestones are used to evaluate implementation progress
- Interim milestones provide targets every few years to ensure implementation stays on track
- Summarized in and Table 23 of the WPP (pages 89-90)

00

N/A

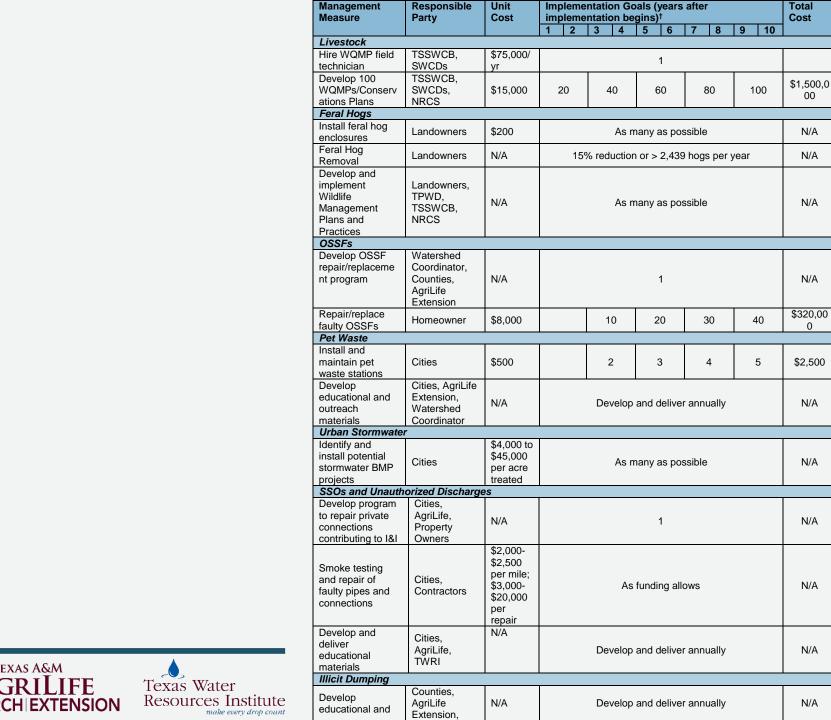
N/A

N/A

N/A

0

N/A


N/A

N/A

N/A

N/A

N/A

EPA'S NINE ELEMENTS

EPA's Nine Elements

- Identify the causes and sources of impairments – Chapters 2, 3, 4, and Appendix
- Estimated Load Reductions Chapter 5
- Proposed Management Measures –
 Chapter 5
- Technical and Financial Needs Chapter
 5 and 7
- Information, Education, and Public Participation – Chapters 5 and 6
- Schedule Chapter 8
- Milestone Chapter 8
- Evaluation Criteria Chapter 8
- Monitoring Component Chapter 8

WHAT'S NEXT?

The next steps

- Is the current draft WPP and associated I-Plan approved for submission to TCEQ?
- If so, draft documents will be submitted this summer
- Currently develop 319 grant proposal to fund implementation of the WPP, expand monitoring, fund a coordinator
- Plan on meeting summer or fall of next year for the next update!

Thank you!

A big thank you to all the stakeholders that took part in these meetings and provided feedback!

Allen Berthold TWRI 979-845-2028 taberthold@ag.tamu.edu

Michael Schramm TWRI 979-458-9191 michael.schramm@ag.tamu.edu

