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Abstract 16 

Climate oscillations are one of the primary factors that influence precipitation. This study 17 

uses canonical correlation analysis (CCA) to examine how El Niño-Southern Oscillation 18 

(ENSO), Atlantic Multidecadal Oscillation, North Atlantic Oscillation, Pacific Decadal 19 

Oscillation, and the Pacific-North American pattern influence precipitation in Texas. This 20 

study identifies the months, regions, and time lags where the relationships between climate 21 

oscillations and precipitation are strongest. Correlation results indicate that ENSO accounts 22 

for the greatest amount of precipitation variance in Texas. However, including all five 23 

climate oscillations is important and together they account for a greater amount of the 24 

variance in precipitation than any individual climate oscillation. Precipitation in southern 25 

Texas is more strongly influenced by climate oscillations than other regions in Texas. The 26 

CCA results demonstrate that there are statistically significant relationships between the 27 

climate oscillations and precipitation at time lags longer than 6 months during the summer 28 

and at time lags shorter than 6 months during the winter. Based on the CCA results, a 29 

precipitation forecast model was developed for the three climate regions that we defined. 30 

In the cases of January, the Heidke Skill Score (HSS) of our model is comparable or higher 31 

to those achieved by the Climate Prediction Center (CPC) in each region. For all of the 36 32 

month/region cases (12 months * 3 regions), there are 50% cases that the HSS of our model 33 

is comparable or higher to those achieved by the CPC. The results of this study illustrate 34 

that including multiple teleconnections can increase forecast skill, and statistical methods 35 

are useful for precipitation forecasting at a 0-month lead time. 36 
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1.  Introduction 39 

Drought is a recurrent natural hazard that arises from a considerable deficiency in 40 

precipitation [Zargar et al., 2011]. The occurrence of drought has impacts on agriculture, 41 

hydrology, ecosystems, society, and the economy [Heim, 2002; Quiring and Papakryiakou, 42 

2003; Zargar et al., 2011]. Climate oscillations have been shown to be one of the factors 43 

that causes variations in precipitation [Ning and Bradley, 2014; Trenberth, 2011]. A 44 

climate oscillation is defined as a slowly varying change of climate about a mean that recurs 45 

with some regularity [American Meteorological Society (2016)]. An understanding of the 46 

interactions between climate oscillations and precipitation variability is vital for the 47 

prediction and mitigation of drought. 48 

A great deal of previous research has focused on how El Niño-Southern Oscillation 49 

(ENSO) affects precipitation. For example, Hunt [2015] performed a multi-millennial 50 

simulation with a coupled global climatic model to investigate extreme rainfall events in 51 

the Dust Bowl region, located in the southern Great Plains. This region was characterized 52 

by a persistent drought and associated dust storms during the 1930s  [Schubert et al., 2004].  53 

Schubert et al., [2004] found that ENSO has a significant impact on the generation of 54 

rainfall anomalies at an interannual timescale. In contrast, Hu and Feng [2001] analyzed 55 

the effects of ENSO on the interannual variations in summer rainfall in the central United 56 

States and found that there is no persistent effect of ENSO on the summer rainfall in the 57 

central United States. The correlations between summer rainfall and tropical Pacific SSTs 58 

were strong during 1871-1916 and 1948-1978, but the relationship was weak during 1917-59 

1947 and 1979-present. There are also studies regarding the impact of other teleconnections 60 

on precipitation, such as the Atlantic Multidecadal Oscillation (AMO) [Schlesinger and 61 
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Ramankutty, 1994], North Atlantic Oscillation (NAO) [Wallace and Gutzler, 1981], Pacific 62 

Decadal Oscillation (PDO) [Mantua and Hare, 2002], and Pacific-North American pattern 63 

(PNA) [Wallace and Gutzler, 1981]. For example, Hurrell [1995] found that changes in 64 

the mean circulation patterns over the North Atlantic are accompanied by shifts in storms 65 

tracks and synoptic-scale eddy activity. These changes affect the transport and convergence 66 

of atmospheric moisture and consequently alter regional precipitation. Sutton and Hodson 67 

[2005] demonstrated that the boreal summer climate was affected by the AMO on 68 

multidecadal timescales during the 20th century. Leathers et al. [1991] found that the PNA 69 

was highly correlated with regional temperature and precipitation from 1947 to 1982 for 70 

the fall, winter, and spring months when the PNA serves as a main mode of North 71 

Hemisphere mid-tropospheric variability. McCabe et al. [2004] demonstrated that climatic 72 

oscillations occurring at the decadal scale such as the AMO and PDO have been found to 73 

explain around half of the variance in drought frequency across the United States since the 74 

1900s. While the AMO and PDO are important for explaining precipitation variability 75 

when considered by themselves, decadal climate oscillations also tend to modulate the 76 

impact that ENSO has on precipitation. Enfield et al. [2001] found that the AMO has a 77 

significant impact in the Mississippi River basin, but not in the Okeechobee river basin. In 78 

Texas, the warm phases of the AMO greatly diminish the well-known positive relationship 79 

between ENSO and precipitation during the winter season (DJF). Schubert et al. [2016] 80 

investigated the relationships between sea surface temperatures (SST) and precipitation 81 

variability on a global scale. In North America they found that SST variability in the 82 

tropical Pacific is the dominant factor that influences precipitation, with some contribution 83 

from Atlantic SSTs. Therefore, at interannual time scales, ENSO is the primary driver of 84 
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precipitation variability throughout much of North and South America. At decadal time 85 

scales, the AMO and PDO are the primary drivers of precipitation variability. Cook et al. 86 

[2014] investigated the pan-continental droughts in North America over the last 87 

Millennium. They defined pan-continental drought as synchronous drought in three regions. 88 

The results showed that droughts in the Southwest and Central Plains occur in conjunction 89 

with either the Southeast or Northwest during La Niña conditions, while droughts in 90 

Central Plains, Northwest, and Southeast are primarily associated with the PDO and AMO. 91 

These studies demonstrate that precipitation variability across space and time is 92 

influenced by climate oscillations. However, because the impact of each climate oscillation 93 

does not occur in isolation, it is important to analyze the impact that multiple 94 

teleconnections jointly have on precipitation variability. Stevens and Ruscher [2014] 95 

investigated the impact of AMO, NAO, PDO and ENSO on temperature and precipitation 96 

in the Apalachicola-Chattachoochee-Flint (ACF) River Basin, which supplies water to 97 

Alabama, Georgia, and Florida. Their results showed that each of the sub-basins of the 98 

ACF are affected in a unique way by climatic oscillations, and no single climatic oscillation 99 

can adequately explain/predict the variations in meteorological conditions. Wise et al. 100 

[2015] analyzed the associations of cool-season precipitation patterns in the United States 101 

with teleconnection interactions, including ENSO, NAO, PNA, East Atlantic pattern (EA) 102 

and West Pacific pattern (WP). Their results emphasized the importance of considering 103 

multiple climatic oscillations when forecasting the seasonal rainfall variability. Ning and 104 

Bradley [2014] also studied the relationships between winter precipitation variability and 105 

teleconnections over the northeastern United States. Their correlation analysis showed that 106 

the first Empirical Orthogonal Function (EOF) pattern is significantly correlated with PNA 107 
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and PDO, the second EOF pattern is significantly correlated with NAO and AMO, and the 108 

third EOF pattern is associated with ENSO, PNA and PDO. Therefore, multiple 109 

teleconnections should be considered when analyzing the relationship between climate 110 

oscillations and precipitation variability. The aforementioned research has shown that 111 

ENSO, NAO, AMO, PNA and PDO are the major climate oscillations that have an impact 112 

on precipitation in the United States; therefore, this study will investigate the impacts of 113 

the five climate oscillations on precipitation variability in Texas.  114 

Only simultaneous relationships (zero lead time) between teleconnections and 115 

precipitation were evaluated in the studies described above. However, there can be 116 

significant time lags between teleconnections and precipitation. For example, Redmond 117 

and Koch [1991] analyzed how ENSO and PNA influence precipitation, temperature, and 118 

streamflow in the western United States. Their results indicated that June-November ENSO 119 

was strongly correlated with October-March precipitation, suggesting that the winter 120 

precipitation was related to ENSO at a six-month time lag. Harshburger et al. [2002] also 121 

demonstrated that the state of ENSO during the fall season can be used to predict winter 122 

precipitation in the western U.S. McCabe and Dettinger [1999] investigated the 123 

relationship between ENSO during fall season and the winter precipitation. Their results 124 

indicated that the strength of the correlations between fall ENSO and winter precipitation 125 

in the western U.S. varied over space and time during the 20th century. When PDO is 126 

negative, the relationship between ENSO and precipitation is strong. When PDO is positive, 127 

ENSO and precipitation are weakly correlated. Brown and Comrie [2004] studied the 128 

impact of fall ENSO on winter precipitation in the western U.S. They found significant 129 

correlations between fall ENSO and winter precipitation in the Southwest U.S. Specifically, 130 
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they found that wet winters tend to follow El Niño events, and dry winters follow La Niña. 131 

Our study will also investigate the lagged relationships between multiple teleconnections 132 

and precipitation.   133 

The state of Texas frequently experiences drought [Stahle and Cleaveland, 1988]. The 134 

four most significant droughts in Texas during the last century occurred in 1916-1918, 135 

1925, 1948-1957, and 2010-2011 [Hoerling et al., 2013]. The increased potential 136 

evapotranspiration that accompanies the warmer temperatures that are characteristic of 137 

Texas create an environment in which drought can occur even with minor precipitation 138 

deficits [Nielsen-Gammon, 2011]. Droughts in Texas are caused by numerous factors, 139 

including natural atmospheric variability (i.e., climate oscillations), land-atmosphere 140 

interactions, and thermodynamic conditions [Fernando et al., 2016; Myoung and Nielsen-141 

Gammon, 2010; Seager et al., 2014]. This paper investigates the simultaneous and lagged 142 

relationships between Texas precipitation and ENSO, NAO, AMO, PNA and PDO. The 143 

goals of this paper are to: (1) determine which climate oscillation accounts for the greatest 144 

amount of precipitation variance in Texas, (2) identify the regions and months (or seasons) 145 

where climate oscillations have the largest impact on precipitation, (3) identify at what time 146 

lag the relationship between climate oscillations and precipitation are strongest and (4) 147 

forecast precipitation based on multiple climate oscillations and compare with the 148 

precipitation forecast from Climate Prediction Center (CPC).  149 

2.  Data 150 

2.1 Precipitation 151 

Monthly precipitation data from the PRISM (Parameter-elevation Regressions on 152 

Independent Slopes Model) dataset were used in this study 153 
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(http://www.prism.oregonstate.edu). PRISM was developed by the Spatial Climate 154 

Analysis Service at Oregon State University. The gridded data are generated by 155 

interpolating meteorological data from approximately 13,000 surface stations and 156 

incorporating spatial information including elevation, slope, rain shadows, temperature 157 

inversions, and coastal effects [Daly et al., 2002; Daly et al., 2008; Daly et al., 1994]. The 158 

monthly PRISM datasets are available at 2.5 arcmin (4 km) resolution from January 1895 159 

to the present. The PRISM dataset is ideal for this study because it provides a long and 160 

consistent record [Mishra and Singh, 2010]. Data used in this study cover a 110-year period 161 

from 1901 to 2010.  162 

2.2 Climatic Oscillations  163 

Five climate oscillations are investigated in this study: ENSO, NAO, AMO, PNA, and 164 

PDO. ENSO is the most frequently studied climatic oscillation. During an El Niño event, 165 

easterly trade winds weaken or reverse and cause anomalous warming of the ocean surface, 166 

changing patterns of meteorological variables such as precipitation [Stevens and Ruscher, 167 

2014]. The NINO3.4 SST anomaly is used in this study to represent ENSO conditions. It 168 

is based on departures from the three-month running mean of SSTs in the NINO3.4 region. 169 

Positive NINO3.4 values are associated with El Niño events, while negative values indicate 170 

La Niña events. NINO3.4 SST anomaly data from 1901 to 2010 can be downloaded from 171 

the NOAA PSD website (http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/). 172 

The NINO3.4 SST index is calculated from the Hadley Centre Sea Ice and Sea Surface 173 

Temperature data set (HadISST1). It is the area averaged SST from 5°S-5°N and 170°-174 

120°W [Rayner et al., 2003]. 175 
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The NAO is an atmospheric oscillation in the North Atlantic Ocean. The NAO index 176 

from the Climate Research Unit is defined as the normalized pressure difference between 177 

a station located in the Azores and a station in Iceland [Stevens and Ruscher, 2014]. The 178 

NAO index from 1901 to 2010 can be downloaded from the NOAA PSD website 179 

(http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/).  180 

 The AMO is a 60-85 year cycle of variable SSTs in the North Atlantic Ocean that has 181 

been shown to correlate with precipitation in the United States [Stevens and Ruscher, 2014]. 182 

The AMO index is calculated using the Kaplan SST as the detrended time series of the area 183 

weighted averaged SST over the North Atlantic from 0˚ to 70˚N [Enfield et al., 2001].  The 184 

smoothed AMO index from 1901 to 2010 can be downloaded from NOAA PSD 185 

(http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/).  186 

The PNA index indicates the nature of atmospheric circulation in the Northern 187 

Hemisphere. A positive phase of the PNA indicates meridional flow with an enhanced jet 188 

stream while a negative phase indicates zonal flow [Henderson and Robinson, 1994]. The 189 

PNA index is calculated using the 500 mb heights from the 20th Century Reanalysis Project 190 

Version V2 dataset. Area-averaged geopotential heights from four regions in the Northern 191 

Hemisphere are combined for the PNA index [Barnston and Livezey, 1987]. The PNA 192 

index data from 1901 to 2010 can be downloaded from NOAA PSD 193 

(http://www.esrl.noaa.gov/psd/data/20thC_Rean/timeseries/monthly/PNA/). 194 

The PDO is based on monthly SST variability in the North Pacific Ocean. The PDO 195 

index is calculated based on the EOF analyses of the monthly SST anomalies in the North 196 

Pacific [Mantua et al., 1997]. The PDO index from 1901 to 2010 can be downloaded from 197 

NOAA PSD http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/. 198 
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3. Methods 199 

3.1 Precipitation anomalies 200 

Monthly precipitation data were converted into precipitation anomalies using Equation 201 

1,  202 

ܣܲ ൌ ܲ െ  ሺ1ሻ 203																																																														ܯܲ

where ܲܣ is the monthly precipitation anomaly, ܲis the monthly precipitation data for the 204 

given month, and ܲܯ is the mean monthly precipitation for the given month. 205 

3.2 Empirical Orthogonal Functions 206 

 Empirical Orthogonal Functions (EOFs) were used to identify regions in Texas that 207 

have similar precipitation. EOFs are commonly used for regionalization because they can 208 

effectively reduce dimensionality and extract patterns [Hannachi et al., 2007; Lorenz, 1956; 209 

Navarra and Simoncini, 2010]. EOF analysis was performed using the gridded monthly 210 

precipitation anomalies from January 1901 to December 2010 at all locations in Texas. The 211 

first step of EOF analysis is to calculate correlation coefficients among all variables.  212 

A VARIMAX (orthogonal) rotation method was applied because it simplifies the 213 

structure of the resultant patterns by forcing the value of the loading coefficients towards 214 

zero or ± 1 [Hannachi et al., 2007]. The VARIMAX rotation technique is a popular method 215 

used in climate regionalization studies because the rotation tends to produce more spatially 216 

coherent regions [White et al., 1991]. An unrotated EOF is primarily used as a data 217 

reduction technique and is not appropriate for climate regionalization [Yarnal, 1993]. After 218 

rotation, each grid cell was assigned to the factor on which they had the highest loadings. 219 
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The first three factors were retained and collectively they explain more than 85% of the 220 

variance.  221 

Figure 1 shows the precipitation regions identified using the rotated EOFs. Region 1 is 222 

located in northeastern Texas and it experiences the greatest precipitation variability with 223 

a 48.45 mm standard deviation. Region 2 is located in northwestern Texas and it 224 

experiences the least precipitation variability with a 25.58 mm standard deviation. Region 225 

3 is located in southern Texas and its standard deviation is 40.63 mm. The regional 226 

precipitation anomalies shows that there is no significant trend in regional precipitation 227 

over the study period. Mean annual precipitation in Texas has a distinct east-to-west 228 

gradient. Based on the 1971 to 2000 normals [Committee, 2006], the mean annual 229 

precipitation is highest in eastern Texas (~1500 mm) and lowest in western Texas (~300 230 

mm).  231 

3.3 Canonical Correlation Analysis 232 

Canonical correlation analysis (CCA) was used to analyze the relationships between 233 

precipitation and the five teleconnections. Simultaneous (no lag) and lagged relationships 234 

(1, 3, 6, 12, and 24-month lags) were evaluated using monthly and seasonal data. Seasons 235 

were defined using the normal climatological convention of winter (DJF), spring (MAM), 236 

summer (JJA), and fall (SON). 237 

CCA is a linear multivariate approach used to compare two sets of data, independent 238 

and dependent, with each set composed of multiple arrays of variables [Thompson, 2005]. 239 

CCA attempts to find relationships between a set of predictor variables and a set of 240 

predicted variables. The linear combinations represent the weight of at least two variables 241 

from the respective set, therefore creating the two variant arrays (U1 & V1) seen in Equation 242 
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2, in which x represents the precipitation anomalies, y represents the climate oscillations, 243 

a represents the coefficients for precipitation, and b represents the coefficients of the 244 

climate oscillations [Borga, 2001; Stevens and Ruscher, 2014]. 245 

ଵܷ ൌ ܽଵݔଵ  ܽଶݔଶ  ⋯ܽݔ 246 

                                        ଵܸ ൌ ܾଵݕଵ  ܾଶݕଶ  ⋯ܾݕ																																								 	ሺ2ሻ 247 

The loading matrices calculated using Equation 2 produce canonical loadings, which 248 

are linear correlations between the variables and the variate. The loadings are used to 249 

calculate the canonical cross loadings that determine the linear correlation between the 250 

independent variable and dependent variable. The canonical cross loadings of the climate 251 

oscillations are estimated using the correlation coefficient in Equation 3 where Sxx and Syy 252 

are variance-covariance matrices of the respective variable and Sxy and Syx and the 253 

covariance matrices of precipitation and the climate oscillations [Stevens and Ruscher, 254 

2014]. 255 

ܾݎ ൌ ൣܵ௬௬൧
ିଵ
ൣܵ௫௬൧ሾܵ௫௫ሿିଵൣܵ௬௫൧ܾ																																																		ሺ3ሻ 256 

In this study, the dependent variable set is precipitation anomalies at different lags and 257 

the independent set is the five climatic oscillations. The canonical loadings and cross 258 

loadings are used to understand the relationships, while the canonical correlation values 259 

and proportion of variance explained in the dependent variables by the independent variate 260 

are used to examine the overall strength of each analysis. This approach allows us to 261 

simultaneously examine the impacts of climatic oscillations on precipitation variations 262 

[Stevens and Ruscher, 2014]. 263 

CCA provides information about (1) the varying effects of climate oscillations in 264 

different regions, and (2) how the strength of the relationships change for each time lag. 265 
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Canonical roots that are not statistically significant at the 95% confidence level were 266 

eliminated based upon the methods used by Stevens and Ruscher [2014].  267 

3.4 Monthly Precipitation Prediction 268 

A CCA-based linear regression model was developed to evaluate whether climate 269 

oscillations can be used to produce skillful monthly forecasts of precipitation in Texas. The 270 

linear regression model uses weights for each of the climate oscillations calculated as the 271 

dividend between the canonical loadings and the dependent and independent arrays. The 272 

CCA-based forecast model was built using data from 1901-1980 and evaluated using data 273 

from 1981 to 2010.  274 

 The Heidke Skill Score (HSS) was used to evaluate the skill of the precipitation 275 

forecast and to facilitate comparison to the skill of the CPC monthly precipitation forecast. 276 

The HSS was calculated based on observed and predicted precipitation values from 1981-277 

2010 which were grouped into three percentile ranges based upon their distribution; below 278 

normal, average, and above normal. This was done to standardize the precipitation 279 

predictions in a manner that is consistent with the methodology used by CPC. Since the 280 

CPC precipitation forecast skill scores are based on observed and predicted precipitation 281 

data from 1981 to 2010 [CPC, 2016a], the skill score of the CCA-based model was also 282 

calculated using precipitation data from 1981 to 2010. The HSS values were calculated 283 

using Equation 4,  284 

ܵܵܪ                                                ൌ 	 ሺேିாሻ
ሺ்ିாሻ

																																																																												ሺ4ሻ                  285 

Where NC is the number of correct forecasts, T is the total number of forecasts, and E 286 

is the number of forecasts expected to verify based upon climatology. 287 

4. Results 288 
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4.1 CCA Results 289 

Figure 2 shows the simultaneous correlations (no lag) between each climate oscillation 290 

and precipitation for each month in each Texas regions. Only correlations that are 291 

statistically significant at the 95% confidence level are shown. ENSO has the most 292 

statistically significant correlations with precipitation, followed by PNA, PDO, NAO, and 293 

AMO. There are a total of 36 month/region combinations (12 months * 3 regions) and there 294 

is a statistically significant correlation between ENSO and precipitation in 19 of the 36 295 

cases (53%). There is a statistically significant correlation between PNA and precipitation 296 

in 28% of these combinations. PDO, NAO, and AMO have statistically significant 297 

correlations in 22%, 11%, and 0% of these 36 combinations, respectively.  298 

Figure 3 shows how the correlations between multiple climate oscillations and 299 

precipitation vary by month and region. Correlations were calculated for the following 300 

combinations of climate oscillations: ENSO, ENSO/PNA, ENSO/PNA/PDO, 301 

ENSO/PNA/PDO/NAO, and ENSO/PNA/PDO/NAO/AMO. Most of the statistically 302 

significant correlations occur during the winter months and the number of significant 303 

correlations increases as additional climate oscillations are included. Even the AMO, which 304 

did not have any statistically significant correlations during the univariate analysis, helped 305 

to explain more of the variance in precipitation when included with other climate 306 

oscillations. Not surprisingly, our results show that the inclusion of additional climate 307 

oscillations is helpful for explaining precipitation variability in Texas.  308 

Next, the dependent cross loadings were calculated as the correlation between the 309 

observed dependent variable (i.e., precipitation) and the opposite canonical variate, which 310 

is the linear combination of the five climate oscillations (Figure 4). Similar to the 311 
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correlations, most of the significant cross loadings are observed during the winter months. 312 

Additionally, most of the significant cross loadings during the winter occurred at shorter 313 

time lags, while there were more significant cross loadings at longer time lags during the 314 

summer months. Specifically, in 39 out of 43 cases, the cross loadings during October to 315 

March of the following year occurred at less than 3-months lags. In 27 out of 38 cases, the 316 

cross loadings during April to September occurred at no less than 3-months lags (Figure 317 

4).  318 

4.2 Precipitation Forecast Results 319 

As described above, a CCA-based linear regression model was developed to evaluate 320 

whether the climate oscillations can be used to produce skillful monthly forecasts of 321 

precipitation in Texas. Figure 4 shows that most of the statistically significant cross 322 

loadings occurred during the winter. Therefore, January was selected to build the CCA-323 

based regression model for the three regions. To compare the CCA-based forecast skill to 324 

that of the CPC, the CCA-based regression model was built using all five climate 325 

oscillations at a 0-month lead. That is, climate oscillations from December are used to 326 

forecast January precipitation. A second regression model was also built using only ENSO. 327 

The skill of this model will be compared to that of the CCA-based model that uses all 5 328 

climate oscillations. This will show the relative value of including additional oscillations.  329 

Table 1 shows how the performance of these models varies by month and region. Both 330 

models perform best in region 3. The model that uses all five climate oscillations has an R2 331 

of 0.48 and an MAE of 22.46 mm. The ENSO-only model has an R2 of 0.41 and an MAE 332 

of 24.25 mm. The regression model with all five climate oscillations has a little bit better 333 
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performance than the regression model with only ENSO because the regression model with 334 

five teleconnections explained more variance of the precipitation.  335 

The precipitation forecasts are least skillful in region 2. In fact, both the ENSO-only 336 

and five variable model are not statistically significant. The performance of the regression 337 

model with all five teleconnections for region 1 is better than the regression model with 338 

only ENSO, even though the regression model with all five teleconnections only has an R2 339 

of 0.15. The ENSO-only model is not statistically significant. The comparison of the two 340 

types of regression models suggests that using a prediction model based solely on the five 341 

teleconnections can produce somewhat better predictions of precipitation in some regions 342 

in Texas than the model only based on ENSO. The various performances of the regression 343 

models for the three regions in Texas is related with the cross loadings between the multiple 344 

teleconnections and precipitation. The cross loadings for region 3 are highest in January, 345 

followed by the cross loadings for region 1 and 2 (Figure 4). The performance of the 346 

regression model is best for region 3, followed by region 1, while region 2 has the worst 347 

performance. The errors of the regression models for all regions are high. This indicates 348 

that the CCA model cannot accurately predict the magnitude of the precipitation anomalies. 349 

However, it is not uncommon that the skill of monthly to seasonal forecasts is relatively 350 

low [McCabe and Dettinger, 1999; Barnston et al., 1996]. Therefore, in the next section 351 

of the paper we compare the climate oscillation-based forecasts developed in this paper to 352 

the CPC forecasts.  353 

4.3 Comparing Forecast Skill to CPC 354 

The CPC provides monthly precipitation forecasts at a 0-month lead. The 0-month lead 355 

of precipitation forecast is created and updated the last day of the month for the following 356 
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month. Therefore, all data in the initial month are used to predict precipitation in the 357 

subsequent month. Our precipitation forecast is similar with this type of CPC monthly 358 

precipitation forecast. Both the CCA-based forecast model and the CPC forecast model 359 

utilize all antecedent precipitation data from the first month to predict precipitation in the 360 

following month. The difference between CCA-based forecast and the CPC forecast is the 361 

methodology. The CCA-based forecast utilizes a regression model that includes the five 362 

teleconnections. The CPC forecast is primarily based on a dynamical model [CPC, 2016b]. 363 

The dynamical model uses a set of current precipitation observations and equations 364 

describing the physical behavior of the precipitation system to predict the precipitation in 365 

a short time future. Then, the predicted precipitation data are used as the initial condition 366 

for a subsequent prediction for the next time-step until the future prediction time is reached. 367 

The CPC reports the Heidke Skill Score for various regions (Figure 5). Because the regions 368 

that are used by CPC do not match the regions that were defined in this study using EOF 369 

analysis and the years used by the CPC do not match the years of our study, it is difficult 370 

to directly compare forecast skill. Therefore, we have presented the results in two different 371 

ways, a direct comparison and an indirect comparison. The direct comparison evaluates the 372 

forecast skill from 2005 to 2010. The indirect comparison evaluates the CCA forecast skill 373 

from 2000 to 2010 and the CPC forecast skill during 2005 to 2015, so that there is a larger 374 

sample size of predictions even though the years may not match. 375 

Table 2 displays the results of the direct comparison during 2005-2010 for the three 376 

regions in Texas. Since the regions used by CPC do not match the regions that were defined 377 

using EOF analysis in this study, several corresponding CPC regions were used in this 378 

comparison. Region 1 defined by EOF in this study approximately includes Region 60 and 379 
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Region 61 from the CPC. Region 2 defined by EOF in this study approximately includes 380 

Region 54, Region 55, Region 64, and Region 65 from the CPC. Region 3 defined by EOF 381 

in this study approximately includes Region 62 and Region 63 from the CPC. For Region 382 

1, the HSS for the CCA model is higher than the HSS for the CPC in Regions 60, but lower 383 

than the CPC in Regions 61. The HSS of the CCA model is lower than the average skill 384 

score for Regions 60-61. For Region 2, the HSS for the CCA model is higher than the HSS 385 

for the CPC in Regions 64 and Region 65, but lower than the CPC in Regions 54 and 386 

Region 55. The HSS of the CCA model is higher than the average skill score for these four 387 

regions. In Region 3, the HSS for the CCA model is higher than the HSS for the CPC in 388 

Regions 62, but lower than the CPC in Regions 63. The HSS of the CCA model is higher 389 

than the average skill score for Regions 62-63. Since these scores may be affected by the 390 

smaller sample size of six years, an indirect comparison of forecast skill was also 391 

performed (Table 2).  392 

As the sample size increases, the forecast evaluation should approach the true skill and 393 

become more stable. The HSS of the indirect comparison is similar to the direct comparison. 394 

The HSS of the CCA model in Region 1 is higher than the HSS from the CPC in Region 395 

60 but lower than the HSS of the CPC in Region 61. For Region 2, the HSS of the CCA 396 

model is higher than the HSS of the CPC regions. In Region 3, the HSS of the CCA model 397 

is higher than the HSS of the CPC in Region 62 but lower than the HSS of the CPC in 398 

Region 63. However, the HSS for the CCA model is higher than the average HSS for the 399 

CPC regions for all cases. One limitation of the indirect comparison is that the years used 400 

to assess forecast skill are not same for the CPC and the CCA. However, these results 401 
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support what was found in the direct comparison and suggest that the skill of the CCA 402 

model is equivalent or better than the CPC in most locations and timescales. 403 

The HSS of the CCA and CPC models were also compared for all other months. The 404 

results show that in 18 out of 36 cases (12 months * 3 regions) the HSS for the CCA model 405 

is comparable or higher than the average HSS for the CPC regions in the direct comparison. 406 

In the indirect comparison, HSS for the CCA model is higher than the average HSS for the 407 

CPC regions in only 13 of 36 cases. Even though in less than 50% cases the HSS of the 408 

CCA model is better than the CPC forecast, the results of this study can be useful for 409 

precipitation forecasting at a 0-month lead time during months when the performance of 410 

CCA model is better than CPC forecast. 411 

5. Discussion and Conclusion 412 

Correlations between the five climate oscillations and precipitation indicated that 413 

ENSO accounts for the greatest amount of precipitation variance in Texas. Many previous 414 

studies have also shown that ENSO is the most important factor that affects precipitation 415 

variability [Barnston et al., 1996; Dai and Wigley, 2000; Ropelewski and Halpert, 1996]. 416 

However, across nearly every month and region, the correlations between the climate 417 

oscillations and precipitation variability were stronger when the combined impact of 418 

multiple teleconnections was considered. This result is consistent with previous studies 419 

such as Stevens and Ruscher [2014], Wise et al. [2015], and Ning and Bradley [2014]. 420 

Stevens and Ruscher [2014] indicated that the sub-basins of the ACF are affected 421 

differently by multiple climatic oscillations, and no particular climatic oscillation can 422 

explain surface meteorological variation. Wise et al. [2015] also emphasized the 423 
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importance of considering multiple climatic oscillations when forecasting the seasonal 424 

rainfall variability.  425 

Using this knowledge, CCA was applied to identify the months, regions, and time lags 426 

where the relationships between teleconnections and precipitation are the strongest. 427 

Dependent cross loadings were used to provide a means for quantifying the relationship 428 

between the five combined teleconnections and the precipitation anomalies at various time 429 

lags. The results of the CCA analysis were generally in agreement with the correlation 430 

results. The strongest canonical cross loadings occurred during the winter and there were 431 

more time lags that were statistically significant during the winter. These results agree with 432 

studies such as Hu and Feng [2001] and Leathers et al. [1991] which suggest that 433 

teleconnections have a stronger impact on North American precipitation during the fall, 434 

winter, and spring. Statistically significant relationships were found for longer time lags (> 435 

6 months) during the summer months, while most of the statistically significant 436 

relationships were found at shorter time lags (< 6 months) during the winter. These findings 437 

are supported by previous studies that observed the strongest relationships between 438 

precipitation and teleconnections during the winter months [Leathers et al., 1991; Ning and 439 

Bradley, 2014; Sutton and Hodson, 2005; Wise et al., 2015]. There were differences in the 440 

strengths of the canonical loadings and the performance of the CCA forecasts across the 441 

three regions of Texas used in this study. The differences in performance suggests that our 442 

EOF-based regionalization successfully identified three climatically distinct regions.  443 

A CCA-based forecast model was developed using five climate oscillations. The model 444 

was shown to have forecast skill that was similar, and in some cases, better than the CPC. 445 

While the monthly forecasts for the CPC generally use dynamical models for precipitation 446 
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prediction, the results of this study suggest that statistical methods could improve the 447 

quality of forecasts, particularly during situations when the dynamical model performs 448 

poorly. Since one of the objectives of this paper was to determine the value of considering 449 

multiple teleconnections, the results of the CCA-based model was compared to a model 450 

using only ENSO. The results show that the CCA-based model was slightly better than the 451 

model using only ENSO. The correlations between the teleconnections and precipitation 452 

shows the CCA-based model can explain more of precipitation variance. Additionally, the 453 

p-values of the CCA-based model are statistically significant at a 95% confidence level in 454 

regions 1 and 3, indicating that the model predictions are significantly different than a 455 

forecast utilizing solely the mean precipitation (climatology forecast). The ENSO-based 456 

model is only statistically significant in region 3. However, the errors of CCA-based model 457 

are higher than the model using only ENSO in some regions. Generally, the impacts of 458 

teleconnections are strongest in Region 3, which is located in the southern Texas. ENSO 459 

is the primary factor influencing the precipitation in Texas and its impacts in Region 3 is 460 

stronger than in other regions. This result is consistent with the study of Stevens and 461 

Ruscher [2014]. Stevens and Ruscher [2014] found that the southern part of the ACF basin 462 

is influenced by ENSO more strongly than other parts of the basin. The impacts of ENSO 463 

in the southern United States are likely related to the subtropical jet stream. During El Niño 464 

events, the strengthened subtropical jet shifts the winter storm tracks to the south and this 465 

brings more energy and moisture in the region [Redmond and Koch, 1991; Wise et al., 466 

2015]. Therefore, in El Niño years, the Southwest, Southeast, and Great Plains in the 467 

United States tend to be wetter than normal. While, in La Niña years, these regions are 468 

dryer than normal [Wise et al., 2015]. Overall, using multiple teleconnections is valuable 469 
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for explaining and predicting precipitation patterns in Texas. The relative importance of 470 

these teleconnections varies by region, month, and time lag. The results presented here 471 

suggests that the CCA-based model using only five teleconnections is able to adequately 472 

forecast precipitation variability in Texas.  473 

Further research will evaluate whether including additional teleconnections can 474 

improve the accuracy of precipitation forecasts. In addition, it may also be useful to explore 475 

other statistical modeling approaches such as weighted multiple linear regression model 476 

using canonical weights to improving the forecasts. Finally, the skill of the CCA forecast 477 

model was evaluated over a multi-year period. It may be more helpful to evaluate how 478 

forecast skill changes during years when there are strong ENSO events. It is likely that the 479 

skill of the model varies significantly over time and that it is strongest during ENSO events 480 

and that the skill weakens when there are not strong remote forcings.  481 

Texas is a region where there are relatively strong relationships between 482 

teleconnections and precipitation, particularly ENSO. However, the CCA analysis 483 

employed in this paper can be applied to diagnose the impacts of multiple teleconnections 484 

on precipitation variability in other regions around the world. While the CCA-based model 485 

can effectively predict precipitation with skill comparable to the CPC, climate oscillations 486 

only explain around half of the precipitation variability. While the purpose of this study 487 

was to observe the impact teleconnections have on precipitation at various time lags, the 488 

seasonal forecasting of precipitation could improve with the additional consideration of 489 

variables not related to teleconnections. Antecedent temperature, precipitation, and soil 490 

moisture could help to improve the forecast. Land-based hydrological processes also have 491 

influence on precipitation variability [Koster and Suarez, 1995; Koster et al., 2000]. Koster 492 



23 

and Suarez [1995] investigated the impacts of sea surface temperatures and land surface 493 

hydrological state to the annual and seasonal precipitation variability. They found that the 494 

land surface’s impacts on the precipitation variability is greatest during summer when the 495 

precipitation processes are very sensitive to surface conditions. Koster et al. [2000] 496 

indicated precipitation anomalies can be amplified by land surface processes. A positive 497 

precipitation anomaly can lead to an evaporation anomaly through land-atmospheric 498 

feedback, which in turn leads to additional precipitation through water recycling. Since 499 

evaporation is related with soil moisture and temperature, soil moisture and temperature 500 

can be used to improve the precipitation forecast. These types of studies are useful for 501 

examining other areas which could improve precipitation forecasts, while this study 502 

focuses primarily on identifying the strength and nature of the relationship between 503 

precipitation and various teleconnections in Texas.  504 
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 647 

Figure 1. Texas precipitation regions identified using a VARIMAX EOF analysis based 648 

on the first 3 EOFs.  649 

 650 

Figure 2. Correlations between each teleconnection and monthly precipitation anomalies 651 

from 1901-2010 in each region (no lag). Only the correlations that are statistically 652 

significant at a 95% confidence level are shown. 653 
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 654 

Figure 3. Correlations between multiple teleconnections and monthly precipitation 655 

anomalies from 1901-2010 in each region (no lag). Only the correlations that are 656 

statistically significant at a 95% confidence level are shown. 657 

 658 

Figure 4. Clustered stacked bar chart showing dependent cross loadings from the CCA 659 

for all teleconnections and monthly precipitation for all regions at various time lags (0 to 660 

24 months). Only the dependent canonical cross loadings that are statistically significant 661 

at the 95% confidence level are shown. 662 
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 663 

Figure 5. Map of CPC climate divisions with regions used in this study highlighted in red 664 

(http://www.vwt.ncep.noaa.gov/) 665 

  666 



31 

Table 1. Model evaluation statistics for the precipitation forecasts (0-month lead) of 667 

January in the three regions based on the 1981-2010 forecast evaluation period. 668 

  All five teleconnections  ENSO 

R2  P  RMSE(mm)  MAE(mm)  R2  P  RMSE(mm)  MAE(mm) 

Region 1  0.15  0.03  49.11  39.25  0.07  0.16  44.96  36.47 

Region 2  0.08  0.14  24.55  18.67  0.05  0.23  25.24  18.45 

Region 3  0.48  0.00  28.76  22.46  0.41  0.00  28.55  24.25 

 669 

Table 2. Comparison of Heidke Skill Scores between the CCA-based precipitation 670 

forecasts model and the CPC for the month of January in three regions (0-month lead) 671 

HSS 2005-2010 Direct Comparison HSS 2000-2010 (CCA) and 2005-2015 
(CPC) Indirect Comparison 

CCA CPC CCA CPC 
Region 1 0.08 Region 60 -0.25 Region 1 0.31 Region 60 -0.18 

Region 61 0.50 Region 61 0.36 
Average 0.13 Average 0.09 

Region 2 0.67 Region 54 0.75 Region 2 0.44 Region 54 0.36 
Region 55 0.75 Region 55 0.36 
Region 64 0.50 Region 64 0.36 
Region 65 0.50 Region 65 0.32 
Average 0.63 Average 0.35 

Region 3 0.45 Region 62 0.25 Region 3 0.33 Region 62 0.09 
Region 63 0.50 Region 63 0.36 
Average 0.38 Average 0.23 

 672 


