

Baseflow recession analysis across the Eagle Ford gas play (Texas, USA)

Presented by: Saúl Arciniega Esparza

Directed by: Ph.D. Adrián Pedrozo Acuña Ph.D. Antonio Hernández Espriú Ph.D. José Agustín Breña Naranjo

Usually derived from hydrographs

Baseflow represents the contribution of shallow aquifers to the river streamflow

INTRODUCTION

Water use for fracking

Eagle Ford play

17/12/2000

18/12/2015

STUDY ZONE AND DATA

Streamflow and watersheds location

Frac wells density across

17 streamflow gauges inside 0 the play (analysis watersheds) 23 streamflow gauges outside Ο the play (control watersheds) Streamflow data from 1986 to 0 2015, obtained from the USGS Water of the Nation Wells for fracking were Ο obtained from FracFocus data for the period 2011 to 2014 Groundwater consumption Ο and groundwater levels were obtained from TWDB

INSTITUTO DE INGENIERÍA UNAM

OBJETIVE AND METHODS

Analysis of changes in streamflow through the flow-duration curve (FDC)

INSTITUTO **DE INGENIERÍA**

UNAM

METHODS

 $Vb = \int_0^t Qb \, dt$

Baseflow separation though a Recursive Digital Filter (Lyne and Hollick, 1979)

Baseflow recession analysis

METHODS

INSTITUTO DE INGENIERÍA RESULTS: streamflow duration curves and anomalies

RESULTS: baseflow patterns comparison

RESULTS: groundwater consumption

Piezometers located inside and outside the play

Period	Watersheds	Negative changes in baseflow patterns (>40 %)		
		BFI	Vb	a
Moderate fracking	Inside the play	0	1	0
	Outside the play	0	7	0
Intensive fracking	Inside the play	7	13	6
	Outside the play	3	13	2

CONCLUSIONS

- Higher negative changes were detected in baseflow patterns *inside the play* during the *intensive fracking period*.
- Effects in watersheds *inside* the play were associated with an *intensive fracking activity* and *higher irrigation rates*.
- However, it should be noted that the *intensive fracking period* is also linked to *high water stress conditions* generated by depletion in groundwater storage and low precipitation/recharge rates; which are associated to an exceptional drought.
- Results show that the observed decline in baseflow patterns are more significant in *intermittent streamflow regimes*.

Arciniega, S., Brena-Naranjo, A., Hernandez-Espriu, A., Pedrozo-Acuña, A. 2016. Baseflow recession analysis across the Eagle Ford shale play (Texas, USA). EGU General Assembly, Vienna, Austria.

REFERENCES

- Barth-Naftilan, E., Aloysius, N., Saiers, J.E., 2015. Spatial and temporal trends in freshwater appropriation for natural gas development in Pennsylvania's Marcellus Shale Play. Geophys.
- Nicot J-P, Reedy RC, Costley R a., Huang Y. 2012. Oil & Gas Water Use in Texas: Update to the 2011 Mining Water Use Report. Austin, Texas
- Nicot J-P, Scanlon BR, Reedy RC, Costley RA. 2014. Source and Fate of Hydraulic Fracturing in the Barnett Shale: A Historical Perspective. *Enviromental Science & Technology* 48 (3): 2464–2471 DOI: 10.1016/0363-0188(87)90002-8
- □ Scanlon BR, Reedy RC, Nicot JP. 2014a. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays? *Environmental Research Letters* **9** (12): 124011 DOI: 10.1088/1748-9326/9/12/124011
- Scanlon BR, Reedy RC, Nicot J-P. 2014b. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. *Environmental science & Technology* 48 (20): 12386–93 DOI: 10.1021/es502506v