Tres Palacios Creek Watershed July 30th Meeting Recap

Kevin Wagner, PhD Texas Water Resources Institute August 27, 2015

Texas Water Resources Institute

• Operating unit of:

- Texas A&M AgriLife Research
- Texas A&M AgriLife Extension Service
- Texas A&M University College of Agriculture and Life Sciences
- Est. by TX Legislature & Governor in 1964
 - To aid in the resolution of State and regional water resource issues

State requested TWRI to assist in addressing bacteria impaired waters in the Matagorda Bay basin

Tres Palacios Watershed Description

- ⊙ 235,056 acres (367 square miles)
- Creek begins near El Campo in Wharton County
- Tidal segment begins ~0.5 miles upstream of confluence with Wilson Creek and flows ~9 miles into Tres Palacios Bay
- Meets Tres Palacios Bay near Palacios in Matagorda County
- \odot 2 Monitoring Sites in Tidal Section
 - 20636 downstream of confluence with Wilson Creek
 - ▲ 12515 at FM 521

Tres Palacios Creek: At FM 521

Parameter	# of Samples	Min	Max	Avg	Geometric Mean	TCEQ Standard (Screening Criteria)
Water Temp (°C)	411	7.34	33.2	23.71		35.00 maximum
Dissolved Oxygen (mg/L)	372	0.56	16.3	6.89		5.0/4.0 (grab avg/min) ^x
pH (standard units)	373	6.5	9.9	7.82		6.5 - 9.0 range
Ammonia Nitrogen (mg/L)	250	0.01	2	0.12		0.46 (>20% exceedance) ^y
Nitrate Nitrogen (mg/L)	184	0.5	100	15.57		1.10 (>20% exceedance) ^y
Total Phosphorus (mg/L)	51	o	3-4	o.68		0.66 (>20% exceedance) ^y
Orthophosphorus (mg/L)	48	0.03	1.13	0.35		0.46 (>20% exceedance) ^y
Enterococci (cfu/100mL)	160	1	24,000		105.68	35.00 geometric mean
Chlorophyll-a (µg/L)	184	0.5	100	15.57		21.00 (>20% exceedance) ^y

Tres Palacios Creek:

Downstream of confluence with Wilson Creek

Parameter	# of Samples	Min	Max	Avg	Geometric Mean	TCEQ Standard (Screening Criteria)
Water Temp (°C)	18	0.70	21.40	22.70	incut	35.00 maximum
nuclei lennp (c)	10	9.70	31.40	221/0		55.00 mannam
(mg/L)	18	3.00	10.90	6.18		5.0/4.0 (grab avg/min)¤
pH (standard units)	18	6.60	8.40	7.76		6.5 - 9.0 range
Ammonia Nitrogen (mg/L)	18	0.02	0.90	0.15		0.46 (>20% exceedance) ^y
Nitrate Nitrogen (mg/L)	18	0.02	2.33	0.73		1.10 (>20% exceedance) ^y
Total Phosphorus (mg/L)	17	0.08	0.59	0.30		0.66 (>20% exceedance) ^y
Orthophosphorus (mg/L)	9	0.04	0.43	0.19		0.46 (>20% exceedance) ^y
Enterococci (cfu/100mL)	18.00	10	1.3X10 ⁶		148.92	35.00 geometric mean
Chlorophyll-a (µg/L)	18	1.00	38.00	10.67		21.00 (>20% exceedance)"

What are the sources of bacteria?

How does Bacteria get into Creeks?

Non-Point Sources

- Animals directly deposit fecal material into water
- Fecal material runoff from landscape
 - Pet waste, livestock manure, wildlife scat
- Illegal dumping
- Failing septic systems
- Point Sources
 - Improperly treated wastewater discharge
 - Stormwater from cities

Water Quality Management Overview

What does a watershed plan consist of?

- Identification of Sources of Bacteria
- Estimated Loading Reductions Needed
- Description of Management Measures
- Education and Outreach Needed
- Schedule for Implementation
- Implementation Milestones
- Possible Sources of Financial Assistance and Estimated Costs
- Measures of Success (i.e. indicators to measure reductions)
- Monitoring plan to evaluate effectiveness

Keys to developing successful strategies

Local stakeholder involvement essential

- Involvement of a diversity of interests
- Collaborative decision-making
 - Ioint goals and priorities for partnership initiatives
- Decision-making based on sound science & accurate info
- Strong communication and outreach

Major Tasks for Committee & Stakeholders

- Provide guidance and input on potential sources of bacteria and estimated pollutant loads
- Set goals and objectives
- Guide identification of measures that could be implemented to address bacteria
- Identify level of implementation that's reasonable
- Identify outreach and education that is needed
- ⊙ Oversee development of an implementation plan & schedule

Possible Frameworks for Organizing Stakeholders

Option 1

Coordination <u>Stakeholder</u> Committee

Option 3

No formal framework

Option 2 Coordination Stakeholder Committee comments

Option 4

Other recommendations

Workgroups

Possible Work Groups

Work Groups Used in Other Watersheds:

- Agricultural Issues
- Coordination and Policy
- Education and Outreach
- Habitat
- On-Site Sewage
- Ordinance and Planning
- Natural Resource Management
- Science and Monitoring
- Urban Storm Water
- Waste Water Infrastructure
- Wildlife

Work Groups tentatively recommended for Tres Palacios:

- Ag / Wildlife Work Group
- Waste Water Work Group
- Education & Outreach Work Group

Possible Committee Members (18)

Citizen

Texas Water

Resources Institute

ake every drop count

- ⊙ City of El Campo (WWTP)
- City of Palacios
- Landowners
- Matagorda County Extension Agent
- Matagorda County Health Inspector
- Matagorda County Judge or Commissioner
- Matagorda County Soil and Water
 Conservation District
- Palacios Chamber of Commerce
- Subdivision or homeowner's association

- Texas Parks & Wildlife Department
- Texas Sea Grant
- Texas State Soil & Water
 Conservation Board
- USDA-Natural Resources
 Conservation Service
- Wharton County Extension Agent
- Wharton County Health Inspector
- Wharton County Judge or Commissioner
- Wharton County Soil and Water
 Conservation District
- Others

Possible Decision Making Processes

• Formal

- Established bylaws that govern the actions of the committee
- Adhere to Open Meeting Act Requirements

Informal

- Develop a set of ground rules that will be used to govern the committee
- Committee members approve ground rules and their use

4 requests from July 30th meeting

- Stakeholders asked that the 1,300,000 cfu/100 ml be looked at.
 - TWRI confirmed with TCEQ that this was a legitimate measurment
- Set up website for getting comments
 - http://matagordabasin.tamu.edu/
- Send out example/draft ground rules
 - Sent out via email on August 7th
- Need to sample more extensively in impaired segment
 - TWRI working to utilize volunteer monitors to increase sampling

Action Items for Tonight's Meeting

- Finalize Ground Rules
- Seek volunteers & recommendations for:
 - Initial stakeholder group membership
 - Initial work group membership
- Review typical content of watershed plans
- Discuss next steps

